2.4.3 Test
DOI: 10.37190/OZE-FizykaCw1-r2

 Test sprawdzający

Informacja

W teście znajdują się pytania, w których należy zaznaczyć jedną, prawidłową odpowiedź. Na końcu testu umieszczony jest przycisk sprawdzający odpowiedzi całego testu.

Pytanie 1

Obiekt zaczyna obracać się wokół stałej osi. W pewnej chwili czasu, całkowite przyspieszenie obiektu, tworzy z jego prędkością liniową kąt \(60^{\circ}\). Ile wynosi prędkość kątowa \(\omega\) tego obiektu, jeśli przyspieszenie kątowe wynosi \(\displaystyle{\varepsilon =\frac{4}{\sqrt{3}}\,\mathrm{\frac{rad}{s^2}}}\)?
 Wskazówka teoretyczna zadania 2.4.1.2 \(\displaystyle{\operatorname{tg}{\alpha}=\frac{a_d}{a_s}}\) 

Pytanie 2

Wybierz odpowiedź nieprawidłową.

Pytanie 3

Rowerzysta przez \(20\) sekund przyspiesza. Jaką prędkość, po tym czasie, osiągnie rowerzysta? Promień koła wynosi \(R=0,742\,\mathrm{m}\), a przyspieszenie kątowe kół ma wartość \(\displaystyle{\varepsilon=0,674\,\mathrm{\frac{rad}{s^2}}}\).

Pytanie 4

Kąt obrotu promienia koła od czasu opisuje równanie: \(\displaystyle{\varphi(t)=\sqrt{2}+2t^2+\frac{1}{3}t^3}\) [w SI]. Oblicz prędkość kątową w chwili \(t=1\,\mathrm{s}\).

Pytanie 5

Kąt obrotu promienia koła od czasu opisuje równanie: \(\displaystyle{\varphi(t)=\sqrt{2}+2t^2+\frac{1}{3}t^3}\) [w SI]. Oblicz prędkość liniową w chwili \(t=1\,\mathrm{s}\). Promień koła wynosi \(R=2\,\mathrm{m}\).

Pytanie 6

Obroty kola wynoszą \(1500\) obr/min. W pewnym momencie koło zaczyna wytracać prędkość. Po \(30\) sekundach, od momentu rozpoczęcia hamowania, zatrzymuje się. Oblicz przyspieszenie kątowe oraz liczbę obrotów, jakie wykonało koło w czasie hamowania.

Pytanie 7

Krzesełka karuzeli rozmieszczone są tak, że przy obrocie karuzeli zakreślają koło o promieniu \(R=10\,\mathrm{m}\). Prędkość kątowa karuzeli wynosi \(\displaystyle{\omega=\frac{\pi}{2}\,\mathrm{\frac{rad}{s}}}\). Wyznacz okres oraz przyspieszenie normalne krzesełka karuzeli.

Pytanie 8

Punkt, który leży na obwodzie toczącego się bez poślizgu koła o promieniu \(R\), zakreśla krzywą opisaną równaniami (cykloida)
\(\left\{\begin{matrix} x=R\omega t-R\sin(\omega t)\\y=R-R\cos(\omega t)\end{matrix}\right.\)
Wyznacz przyspieszenie całkowite punktu, znajdującego się na obwodzie koła.

Sprawdź wyniki

Podsumowanie