\[ \begin{array}{l}f(x)=\sin x\\f'(x)=\cos x\\f''(x)=-\sin x\\f'''(x)=-\cos x\\f^{(4)}(x)=\sin x\\f^{(5)}(x)=\cos x\end{array}\]
\[ \begin{array}{l}f(x)=\sin x\\f'(x)=-\cos x\\f''(x)=\sin x\\f'''(x)=-\cos x\\f^{(4)}(x)=\sin x\\f^{(5)}(x)=-\cos x\end{array}\]
\[ \begin{array}{l}f(x)=\sin x\\f'(x)=\cos x\\f''(x)=-\cos x\\f'''(x)=-\sin x\\f^{(4)}(x)=\cos x\\f^{(5)}(x)=\sin x\end{array}\]
\[ \begin{array}{l}f(0)=\sin 0=0\\f'(0)=\cos 0=0\\f''(0)=-\sin 0=-1\\f'''(0)=-\cos 0=-1\\f^{(4)}(0)=\sin 0=0\\f^{(5)}(0)=\cos 0=0\end{array}\]
\[ \begin{array}{l}f(0)=\sin 0=0\\f'(0)=\cos 0=1\\f''(0)=-\sin 0=0\\f'''(0)=-\cos 0=-1\\f^{(4)}(0)=\sin 0=0\\f^{(5)}(0)=\cos 0=1\end{array}\]
\[ \begin{array}{l}f(0)=\sin 0=0\\f'(0)=\cos 0=-1\\f''(0)=-\sin 0=0\\f'''(0)=-\cos 0=1\\f^{(4)}(0)=\sin 0=0\\f^{(5)}(0)=\cos 0=-1\end{array}\]
\[\sin x\approx 0+\frac{1}{1!}(x-0)+\frac{0}{2!}(x-0)^{2}+\frac{1}{3!}(x-0)^{3}+\frac{0}{4!}(x-0)^{4}+\frac{\cos c}{5!}(x-0)^{5}=x+\frac{1}{6}x^{3}+\frac{\cos c}{120}x^{5}\]
\[\sin x\approx 0+\frac{1}{1!}(x-0)+\frac{0}{2!}(x-0)^{2}+\frac{-1}{3!}(x-0)^{3}+\frac{0}{4!}(x-0)^{4}+\frac{\cos c}{5!}(x-0)^{5}=x-\frac{1}{6}x^{3}+\frac{\cos c}{120}x^{5}\]
\[\sin x\approx 0+\frac{1}{1!}(x-0)+\frac{0}{2!}(x-0)^{2}+\frac{-1}{3!}(x-0)^{3}+\frac{0}{4!}(x-0)^{4}+\frac{\cos c}{5!}(x-0)^{5}=x-\frac{1}{3}x^{3}+\frac{\cos c}{5}x^{5}\]
Drogi użytkowniku, czytelniku, kursancie, jeśli masz pomysł, by udoskonalić e-kurs, chcesz zadać pytanie, natrafiłeś/aś na jakiś problem lub chcesz wyrazić słowa uznania dla naszej pracy, napisz do nas a jeśli chcesz pozostaw swój adres e-mail, byśmy mogli Ci odpowiedzieć.